Задания к практическим занятиям (ММ РУиС)
Содержание | 
Занятие 1
Тема занятия: Использование системы контроля версий. Моделирование RC-цепи.
Цели занятия:
- Создать студенческие репозитории (хранилища) на Google Code.
 - Познакомить студентов с системой контроля версий Subversion (SVN), включая программы-клиенты
 - Познакомить студентов с MATLAB/Octave: интерфейс, переменные, векторы, матрицы, вывод графиков, написание скриптов.
 - Привести пример решения детерминированной математической задачи с помощью компьютерной модели.
 
Задача 1.1 Использование системы контроля версий
При выполнении практических и лабораторных заданий, а так же домашней подготовке к ним, студенты должны пользоваться личным репозиторием SVN. Для простоты и общности предлагается создавать проекты на Google Code. Это бесплатный сервис для создания собственных репозиториев различных систем контроля версий. Из плюсов - простота, бесплатность, доступность. Минус - ограничение на лицензирование.
Шаг 1. Регистрация аккаунта на googlecode.com
- Переходим на страницу https://googlecode.com.
 - Если уже авторизован другой пользователь - нажимаем кнопку Sign out в правом верхнем углу.
 - Переходим на страницу авторизации путем нажатия кнопки Sign in в правом верхнем углу, либо Sign in to create a project по центру.
 - Выбираем Create an account (если в памяти браузера остались данные о старом пользователе, то потребуется более длинная цепочка Manage accounts on this device > Add account > Create an account)
 - В поле First Name и Last Name студент указывает имя и фамилию соответственно (транслитом, как в загранпаспорте), либо произвольную информацию по собственному усмотрению.
 - Имя почтового ящика указывается по шаблону: 
er09.ivanov.ii@gmail.com, где09- номер потока,ivanov- фамилия студент,ii- инициалы имени и отчества студента. - Пароль выбирается студентом
 - Данные о Дне рождения, телефоне, другом почтовом ящике, стране указываются по желанию студента.
 - Подтверждается согласие с Google Terms of Service и Privacy Policy путем отметки check-box'а, после чего осуществляется переход на следующую страницу кнопкой Next step.
 - Выбор аватара можно пропустить нажатием кнопки Next step.
 
Аккаунт создан.
Шаг 2. Создание репозитория
Репозиторий, хранилище - место, где хранятся и поддерживаются какие-либо данные. В рамках курса ММ РТУиС каждый студент будет использовать личный репозиторий системы контроля версий SVN, предоставляемый сервисом Google Code.
- Возвращаемся на страницу https://googlecode.com. Выбираем Create a new project.
 - Заполняем поля:
-  Project name: 
mm-er09-ivanov-ii, гдеmm- математическое моделирование,09- номер потока,ivanov- фамилия студента,ii- инициалы имени и отчества - Project summary: "Modeling of radio systems and signals" (или другое по собственному усмотрению)
 - Description: "Modeling of radio systems and signals: master course" (или другое по собственному усмотрению)
 - Version control system: Subversion
 - Source code license: на усмотрение студента
 - Project label(s): matlab, radio, signals (или другое по собственному усмотрению)
 - Ввести капчу
 
 -  Project name: 
 - Создать репозиторий нажатием кнопки Create project
 
Шаг 3. Пригласить преподавателей участвовать в проекте
Системы контроля версий созданы не только и не столько для того, чтобы иметь всю историю изменения проекта, а для совместной работы над ним группой. Пригласим поучаствовать во вновь созданном проекте преподавателей.
- На странице проекта выбираем Project Home > People > Add member.
 -  Вводим адреса электронной почты gmail преподавателей, например, 
korogodiniv@gmail.com. - Не изменяем статус - Commiter, нажимаем кнопку Add members
 
Аккаунты преподавателей добавились в список Project People, теперь они могут следить за проектом, вносить в него правки при необходимости.
Шаг 4. Получить рабочую копию на локальный компьютер
Для загрузки рабочей копии проекта с сервера на локальный компьютер используется команда svn checkout. Рабочие каталоги пользователей следует размещать в директории /home/student/Modeling. Пример команды (консоль для ввода открывается по нажатию клавиши клавиатуры F12):
где mm-er09-ivanov-ii - название проекта, er09.ivanov.ii - логин пользователя.
Подсмотреть синтаксис команды можно на веб-странице проекта на вкладке Source > Checkout
Шаг 5. Создать структуру каталогов и сделать первый коммит
В каталоге проекта будут храниться файлы всех практических и лабораторных занятий: отчеты, скрипты, графики.
Заготовим структуру каталогов:
..../1
..../2
..../3
..../4
/praxis
......./1
......./2
......./3
......./4
......./5
......./6
......./7
......./8
Добавляем каталоги под контроль версий с помощью команды svn add или кнопки Add в контекстном меню RabbitVCS (вызывается нажатием правой кнопки на каталогах в файловом менеджере Dolphin).
RabbitVCS - графический интерфейс к программе subversion, установленный в наших лабораториях. Популярный аналог для систем семейства Windows - TortoiseSVN.
После выполнения команды Add файлы (каталоги в нашем случае) добавляются в рабочую копию проекта. Командой svn commit (или аналогичной кнопкой в RabbitVCS) производится так называемый "коммит" - добавление новой ревизии на сервер путем отправки туда вашей рабочей копии. Вводится логин вида er09.ivanov.ii@gmail.com, пароль с вкладки Profile > Settings > GoogleCode.com Password веб-страницы аккаунта. 
Теперь в веб-интерфейсе проекта на вкладке Source > Browse (или после выполнения соответствующих команд SVN или RabbitVCS) можно наблюдать появление новой ревизии и состояние проекта, ей соответствующее. При этом вы имеете возможность просмотреть и предыдущие ревизии, а если понадобиться - получить их на свой компьютер.
Задача 1.2 Получить задание к лабораторной работе 1, разобрать на примере RC-цепи
Тема первой лабораторной - моделирование методом несущей на примере электрических цепей. В рамках домашней подготовки от студентов требуется формализовать постановку задачи (объект, его границы при моделировании, цель исследования), записать математическую модель, предложить тестовое воздействие, составить блок-схему программы модели.
В рамках практического задания предлагается разобрать подготовку к лабораторной работе на примере примере RC-цепи.
Файлы модели хранить в каталоге praxis/1. Сделать несколько коммитов во время и по завершению работы.
Занятие 2
Тема занятия: Доплеровский сдвиг навигационного сигнала. Описание сигналов антенной решетки.
Цели занятия:
- Развить навыки моделирования: использование векторов, цикл по времени, обработка результатов моделирование, построение графиков и гистограмм.
 - Привести пример использования метода комплексных амплитуд.
 - Изложить методику расчет диаграммы направленности антенной решетки, востребованную при подготовке ко второй лабораторной работе.
 
Задача 2.1 Расчет доплеровского сдвига навигационного сигнала
Постановка задачи:
Автомобильный навигатор является классическим радиоприемным устройством класса аппаратура потребителей спутниковых радионавигационных систем. В процессе своей работы он принимает сигналы от навигационных спутников, оценивает их параметры, выделяет навигационное сообщение, заложенное в сигналах, и, в итоге, решает навигационную задачу - определяет своё местоположение.
Так как навигационные спутники относительно планеты находятся в постоянном движении, да и из-за движения потребителя, возникает эффект Доплера - происходит смещение частоты принимаемого сигнала от номинала. Интересно, в каких пределах может находиться это смещение для неподвижного приемника? Какова гистограмма возможных значений?
Комментарии:
Связь доплеровского сдвига и скорости по линии визирования известна каждому радиотехнику:
.
Несущая частота 
 радионавигационного сигнала известна, задается ИКД. Скорость света 
 - фундаментальная константа. Остается определить скорость по линии визирования 
.
Потребитель по условию задачи неподвижен. Тогда скорость по линии визирования - проекция вектора скорости спутника на линию визирования. Итого, достаточно определить два вектора - орт от спутника к потребителю и вектор скорости спутника.
Для простоты ограничимся "плоской" задачей - когда потребитель попадает на подспутниковую траекторию, угловым вращением Земли так же пренебрежем. Иллюстрация - на рисунке:
Выберем СК XOY в которой потребитель расположен на оси OY, его радиус-вектор 
, где 
 - радиус Земли (учет высоты над уровнем моря для Москвы, 170-190 м, слабо повлияет на результат).  
Если определим вектор спутника 
 на любой момент витка, то задача будет почти решена, останется:
- выбрать те положения, для которых y-координата спутника больше y-координаты потребителя (условие видимости),
 -  по приращению координат определить вектор скорости спутника 
, 
 -  вычитанием найти вектор потребитель-спутник 
 задающий линию визирования,
 -  определить скорость сближения по линии визирования 
,
 - пересчитать скорость сближения в доплеровский сдвиг.
 
Определить же радиус-вектор спутника легко. Его длина известна, а скорость вращения - примерно оборот за 12 часов (у нас плоская задача, в которой мы пренебрегли различием ECEF и ECI).
Дальше - дело техники.
Шаги по усложнению модели, если результат неубедителен:
- учесть вращение Земли (наклонение орбит известно из ИКД),
 - учесть случаи, когда потребитель не попадает под подспутниковую траекторию.
 
Задача 2.2 Сигналы антенной решетки
Постановка задачи: Сигнал, приходящий из дальней зоны, принимается системой пространственно разнесенных антенн - антенной решеткой. Размеры антенной решетки значительно меньше постоянной времени корреляции принимаемых сигналов (огибающая, в первом приближении, совпадает для сигналов разных антенн).
Конфигурация антенной решетки - четырехэлементная, с расположением антенных элементов в углах квадрата со стороной, равной половине длине волны.
Построить серию диаграмм направленности при фокусировке в различных направлениях (зенит, отклонение в сторону на 10, 30, 45, 60 градусов).
Комментарии:
По условию задачи можно пренебречь разностью огибающей для различных точек апертуры антенны. Для ряда практических задач это допущение прекрасно выполняется. Тогда, сигналы антенн отличаются только фазой несущей:
где 
 - амплитуда сигналов, 
 - огибающая, 
 - несущая частота, 
 - фаза в начале антенной системы координат OXYZ, 
 - фазовый набег относительно фазы в начале антенной системы координат для j-й антенны. 
Фазовый набег относительно фазы в начале антенной системы координат легко рассчитать зная орт 
 на источник и радиус-вектор 
 антенного элемента. 
Разность хода фазового фронта сигнала 
 есть скалярное произведение орта и радиус-вектора точки пространства
фазовый набег связан с разностью хода фазового фронта через длину волны несущей сигнала
.