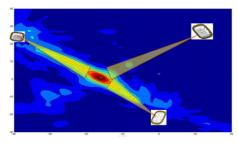
Triangulation Positioning by Means of Wi-Fi Signals in Indoor Conditions

Ilya V. Korogodin, Vladimir V. Dneprov, Olga K. Mikhaylova

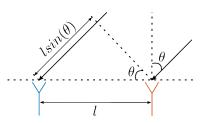
Moscow Power Engineering Institute

PIERS, Rome, June, 2019

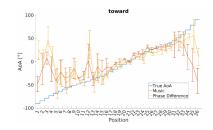

WiFi Angular Measurements

WiFi is widespread, so it is the promising technology for positioning purposes

Commercially successful Cisco Hyperlocation products use the triangulation approach


Is the antenna model correct?

Simple geometric model:


Triangulation is based on angle-of-arrival (AoA) estimations

Signal phases for separated antennas depend on the angle (as a trigonometric function for the simple geometric model)

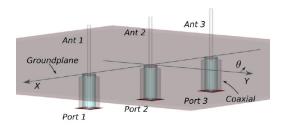
How much does the mutual coupling of antennas influence on AoA estimations and disturb the simple model?

Accuracy degradation for large AoA:

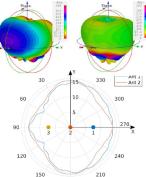
Antenna for study

Requirements:

- be similar to ones in other researches
- be similar to usual MIMO AP antennas
- be easy representable in simulation programs
- be made for mockup

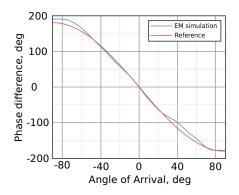


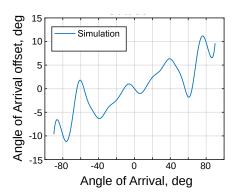
Chosen antenna system:


- Three pins
- The pin's length is $\frac{\lambda}{2}$
- The distance between closest is $\frac{\lambda}{2}$

Computational electromagnetic model

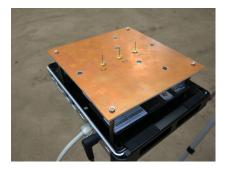
Ground plane is PEC 15x15 cm Pins are cores of cables Cable braids are connected to the ground plane Frequency is about 5GHz




RPs are disturbed:

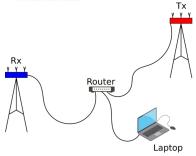
Simulation results

The simulation predicts significant biases for phase differences (up to 15-20 degrees)...



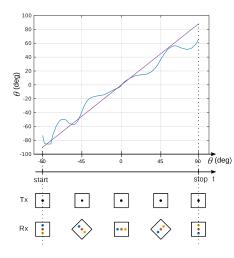
...and corresponding biases in the AoA estimations based on the geometric model (up to 5-10 degrees)

Mockup

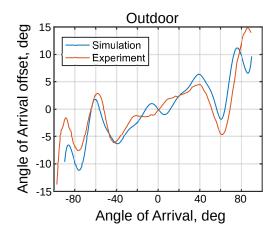

Both the TX and the RX are based on COTS Intel 5300 WiFi 802.11n cards. The cards mounted into Lenovo Q180 PCs, controlled by Kubuntu 14.04.

+ CSITool

An Intel 5300 NIC


Experimental method

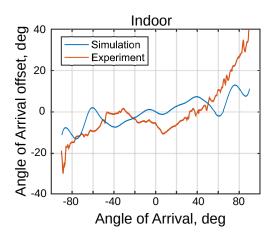
We need true angle values. Even and slow rotation allows to compute the angle from packets time stamps.



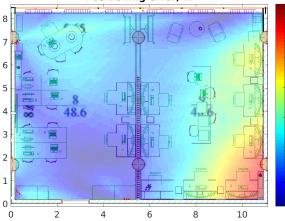
Revo EPH-6 180 deg per 15 min Transactions every 3 sec

Experimental results: outdoor

The experimental results are close to the simulation results!


Difference $< 5 \deg$

Experimental results: indoor


The overlap into the indoor conditions much worse

 $\rm Errors \sim 10 \ deg$

Positioning accuracy

Positioning error, m

- Experimental error profile for simultaion
- 3 AP in the left part of laboratory room

3

2.5

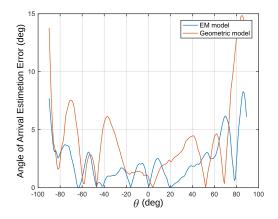
2

1.5

1

0.5

- Mutual coupling is significant for WiFi AoA estimation
- It can cause up to 10 degrees of additional errors
- We should use actual measured RP to mitigate the errors
- WiFi AoA can be used for indoor positioning, errors are $\sim 1~\text{m}$


Thank you for your attention!

Ilya V. Korogodin Moscow Power Engineering Institute e-mail: korogodiniv@gmail.com site: srns.ru

Vladimir V. Dneprov Moscow Power Engineering Institute e-mail: vvdneprov@gmail.com

Olga K. Mikhaylova Moscow Power Engineering Institute e-mail: olyaorient@yandex.ru

Extra slides: Mutual coupling consideration profit

Utilization of the EM results instead of the simple geometric model allows to decrease AoA estimation errors (about two times in our case)